
www.manaraa.com

University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2012

Three-Dimensional Scene Reconstruction Using
Multiple Microsoft Kinects
Matt Miller
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Graphics and Human Computer Interfaces Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Miller, Matt, "Three-Dimensional Scene Reconstruction Using Multiple Microsoft Kinects" (2012). Theses and Dissertations. 356.
http://scholarworks.uark.edu/etd/356

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fetd%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/356?utm_source=scholarworks.uark.edu%2Fetd%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

www.manaraa.com

www.manaraa.com

THREE-DIMENSIONAL SCENE RECONSTRUCTION USING MULTIPLE

MICROSOFT KINECTS

www.manaraa.com

THREE-DIMENSIONAL SCENE RECONSTRUCTION USING MULTIPLE

MICROSOFT KINECTS

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

By

Matthew Thomas Miller

University of Arkansas

Bachelor of Science in Computer Science, 2009

May 2012

University of Arkansas

www.manaraa.com

ABSTRACT

The Microsoft Kinect represents a leap forward in the form of cheap, consumer friendly,

depth sensing cameras. Through the use of the depth information as well as the accompanying

RGB camera image, it becomes possible to represent the scene, what the camera sees, as a three-

dimensional geometric model. In this thesis, we explore how to obtain useful data from the

Kinect, and how to use it for the creation of a three-dimensional geometric model of the scene.

We develop and test multiple ways of improving the depth information received from the Kinect,

in order to create smoother three-dimensional models. We use OpenGL to create a polygonal

model combining the RGB camera image and depth values. Finally we explore the possibility of

combining the three-dimensional models from two Kinects to create a better representation of the

scene.

www.manaraa.com

This thesis is approved for recommendation

to the Graduate Council.

Thesis Director:

Dr. John Gauch

Thesis Committee:

Dr. Craig Thompson

Dr. David Andrews

www.manaraa.com

THESIS DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this thesis when needed for

research and/or scholarship.

Agreed __

 Matthew Thomas Miller

Refused __

 Matthew Thomas Miller

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to thank Dr. John Gauch, for guidance and unfaltering optimism when it

came to getting my thesis finished. Without his support my time as a graduate student and

masters thesis would have surely spiraled into an abyss.

I would also like to thank, Dr. Craig Thompson, and Dr. David Andrews, for serving on

my committee.

To my parents, well, life and school certainly wouldn't have been possible. You shaped

my life, and did the best you could with what you had to work with, me.

Finally, my deepest thanks, and love go to my dear fiancé, Minghua, who was the one

who encouraged me to enter graduate school in the first place, and the one who dragged me to

the finish line.

www.manaraa.com

TABLE OF CONTENTS

1. Introduction .. 1

2. Background And Related Work ... 3

2.1 Microsoft Kinect ... 3

2.2 PrimeSense, NITE, and OpenNI ... 4

2.3 OpenKinect and LibFreenect .. 5

2.4 Oliver Kreylos Kinect Hacking .. 5

3. Approach .. 7

3.1 Setting up and Using Kinect ... 7

3.2 Integration of Kinect and IM libraries .. 8

3.3 Creating a Cleaner Kinect Device Class ... 10

3.4 Two Kinects .. 12

3.5 Averaging Images .. 14

3.5.1 Reasoning Behind Averaging and Holes .. 14

3.5.2 Averaging First Attempt ... 15

3.5.3 Infinite Impulse Averaging .. 15

3.6 Holes ... 20

3.6.1 IR Interference from Multiple Kinects .. 20

3.6.2 Ignoring Bad Data .. 21

3.6.3 Streak ... 22

3.6.4 Previous Average ... 22

3.6.5 Modified Flood Fill .. 22

3.6.6 Horizontal and Vertical Interpolation ... 24

3.7 Three-Dimensional Model .. 25

3.7.1 Usability ... 26

3.7.2 Improvements to the Model ... 27

3.7.3 Texture Alignment .. 28

3.7.4 Combining Two Models... 29

4. Conclusions .. 33

5. Future work .. 34

References ... 35

www.manaraa.com

LIST OF FIGURES

Figure 1: Shows the Microsoft Kinect with RGB camera and Depth Sensors labeled. 4

Figure 2: Oliver Kreylos’ Kinect Hack, 3D scene reconstruction.

http://www.youtube.com/watch?v=KW9of1Ud0uo ... 6

Figure 3: Shows the binary cppview that comes with libfreenect. The left shows the depth

image, and the right shows the RGB image, which does work due to improper initialization

in their code... 8

Figure 4: Shows the update cppview with working RGB image, and im_short depth on left.

... 10

Figure 5: Shows the update cppview with depth converted to color on the left. 10

Figure 6: Shows cppview using the Kinect at index 0. .. 12

Figure 7: Shows cppview using the Kinect at index 1, and my smiling face. 12

Figure 8: Shows the use of two Kinects together .. 14

Figure 9: Infinite impulse response averaging with 10% of the new image and 90% of the

average. ... 16

Figure 10: Infinite impulse response averaging with 30% of the new image and 70% of the

average. ... 17

Figure 11: Infinite impulse response averaging with 50% of the new image and 50% of the

average. ... 18

Figure 12: Infinite impulse response averaging with 70% of the new image and 30% of the

average. ... 19

www.manaraa.com

Figure 13: Infinite impulse response averaging with 90% of the new image and 10% of the

average. ... 20

Figure 14: On the left, without fillHole. On the right, with it.. 23

Figure 15: On the left, without horizontalInterpolate. On the right, with it. 24

Figure 16: On the left, without verticalInterpolate. On the right, with it. 25

Figure 17: Three dimensional model ... 26

Figure 18: Showing Rotate, Translate, and Scale .. 27

Figure 19: Not drawing stretched polygons resulting in a more comprehendible image. 28

Figure 20: Original two models on top, combined on the bottom. 30

Figure 21: Combined model from two different angels, showing improved visibility. ... 31

Figure 22: Combined model with too much in common and different angles resulting in

alignment issues. ... 32

www.manaraa.com

1

1. INTRODUCTION

 Scene reconstruction is an area of research in computer vision that uses a visual form of

input, generally RGB cameras, and sometimes multiple inputs, to reconstruct the scene, or what

the cameras see, as a three-dimensional geometric model. Normally at least two cameras are

used, a set distance from each other, in order to recreate stereo vision [4]. This is analogous to

how the brain works when it combines images from its two eyes to understand a scene.

 When the Microsoft Kinect [5] was introduced as an inexpensive depth sensing camera, it

caught the attention of researchers as a great tool for computer vision applications. The Kinect

makes use of structured light to obtain depth information [2]. It works by sending out a pattern

of infrared light. This light then proceeds to hit objects, once it has done so it will generally

bounce back. The Kinect then uses its infrared sensor, to determine at that specific point in the

pattern, there was an object a certain distance away. This is different from another method of

estimating distance, where you try and detect the same object in multiple images, and use a form

of triangulation to estimate the depth. Kinect depth sensors, along with a coupled RGB camera a

fixed distance away allow you to determine the depth of a specific pixel in the RGB image.

 In our thesis we decided to try to use a Kinect on a computer to collect the depth and

RGB data. Once we had the data, we needed to analyze this data, to determine if it could be used

for scene reconstruction. Although most data is good, we found several problems with the

collection of depth information. Structured light is does not work on certain surfaces, and may

not return the same results twice in a row. Also between two or more Kinects there can be

interference that causes even more errors in the data. We implemented and tested various

methods that attempt to reduce the amount of errors in the depth image; such as time based

www.manaraa.com

2

average, as well as multiple strategies at pixel based averaging. What we found is that while

these methods work well when viewing only the depth information, when combined to make a

three-dimensional model, they are not always better than the original.

 In order to create the three-dimensional model, we decided to draw a collection of

polygons, one for each pixel in the RGB input image. For the Z values of polygon vertices we

used the depth values at the same location as the RGB pixel. This turned out quite well, and

gave us a smooth model based on the depths. A few problems we had were camera calibration,

which we attempt to fix through manual alignment, and jittery polygons. These are polygons

that move back and forth over time and appear to be caused by our attempted fixes on the depth

errors.

 Our next step is to attempt to combine the models of two Kinects by manual translation

and rotation. We let OpenGL handle polygon collisions, which works in certain restricted

situations.

 The rest of this report is organized as follows: first we will provide background about the

hardware and software as well as some similar works using the Kinect. Next we describe our

approach and our development path: what we did, and the results of each different method.

Finally we provide a conclusion, and future work.

www.manaraa.com

3

2. BACKGROUND AND RELATED WORK

In this section we examine some of the hardware, and projects that make working with

the Kinect possible. We also look at some Kinect projects that have been developed since the

Kinect was first “hacked.” In section 2.1 we describe the Kinect itself, and some of its

capabilities. In section 2.2, we will talk about the company PrimeSense and its Kinect software,

NITE, and OpenNI. In section 2.3 we describe OpenKinect, and LibFreenect. Finally in section

2.4 we review a similar Kinect project that also does scene reconstruction.

2.1 Microsoft Kinect

The Kinect is an addition to the Xbox 360 gaming console, that allows complete

controller free motion control. It is said to be able to track up to six people, although this is only

limited by the Kinect's field of view [1].

 The Kinect has an 8 bit VGA RGB camera with resolution 640 x 480 with a Bayer color

filter, 50% green, 25% red, 25% blue, RGBG. Also it has an 11bit 640x480 (632x480 usable,

last 8 columns are always no data) depth sensor, that allows for up to 2048 levels of sensitivity.

The depth sensor consists of an Infrared Projector and CMOS sensor. There is a filter on the

sensor that is supposed to filter out ambient light, allowing it to operate in any condition.

 The software allows the Kinect to track the skeleton, and joints, of each player, allowing

for complex gesture recognition and control. Multiple gestures can be mapped to actions, as well

as the possibility to create new gestures on the fly.

www.manaraa.com

4

Figure 1: Shows the Microsoft Kinect with RGB camera and Depth Sensors labeled.

2.2 PrimeSense, NITE, and OpenNI

Kinect technology is based on PrimeSense's range camera technology [1], which

interprets 3D scenes from continuous infrared structured light. This system called Light Coding

uses a technique variant of image-based 3D reconstruction.

 PrimeSense released open-source source drivers and motion tracking software called

NITE [1]. NITE is the software Microsoft used as a reference for the tracking of features and

gestures in the Kinect. It allows for what is called Natural Interaction. Combined with

PrimeSense's sensor technology, it makes up the bulk of the Kinect.

 PrimeSense also launched OpenNI (Open Natural Interaction) [1] an open source project

that is designed to build natural interaction into devices that support it, as in those with

PrimeSense like technology, RGB-D cameras.

www.manaraa.com

5

2.3 OpenKinect and LibFreenect

OpenKinect is an open source project that allows for use of the Microsoft Kinect on a PC

[2]. The main project libfreenect is a library that provides the ability to use all the Kinect’s

abilities. It allows for retrieval of the RGB camera data, depth data, as well as the ability to

control the devices motor and LEDs. Libfreenect is an asynchronous C interface to the Kinect,

however wrappers for other languages such as C++, C#, Java, Python Ruby are available.

Our thesis depends upon the libfreenect library to easily retrieve the data from the

Kinects. Much of the work draws inspiration from the C++ wrapper, and device examples that

come along with this library.

2.4 Oliver Kreylos Kinect Hacking

 Oliver Kreylos, a UC Davis visualization researcher, released one of the first big hacks

for the Kinect in the form of a YouTube video [3]. This was a project that, similar to our thesis,

combined the depth and RGB information from the Kinect to create a three-dimensional

recreation of the scene. The goal of his project was to have real objects rendered along with

digitally created objects, allowing for a kind of augmented reality. This sparked huge attention in

the Kinect from a wide range of researchers, and showed that it was possible to do this sort of

work for Kinect.

www.manaraa.com

6

Figure 2: Oliver Kreylos’ Kinect Hack, 3D scene reconstruction.

http://www.youtube.com/watch?v=KW9of1Ud0uo

http://www.youtube.com/watch?v=KW9of1Ud0uo

www.manaraa.com

7

3. APPROACH

Overall our approach is relatively straightforward. First, we use LibFreenect from the

OpenKinect project to get the image and depth data we need. Then, we analyze the data and

apply various methods to attempt to minimize errors. Next, we combine the depth and RGB

images to produce a 3D geometric model using OpenGL. Finally, we combine two 3D models,

to attempt to create a better reconstruction of the scene.

3.1 Setting up and Using Kinect

The first thing to do was to get a single Kinect up and running on a Linux PC. This

involved downloading and installed a driver that allows use of the Kinect over USB. Afterwards,

we chose to use the OpenKinect software to access that Kinect. We chose to go this route rather

than rewriting code to access it via USB. Code would have to be written using libusb to interact,

and all the appropriate video callbacks, making it more work than it was worth. With

OpenKinect all this is already built in, along with the wrappers for any language, including the

one we needed which is C++. After it was installed to test we used a binary called cppview,

which simultaneously shows the RGB stream, and depth stream using OpenGL.

www.manaraa.com

8

Figure 3: Shows the binary cppview that comes with libfreenect. The left shows the depth image, and the

right shows the RGB image, which does work due to improper initialization in their code.

3.2 Integration of Kinect and IM libraries

In order to learn how to interact with the library and be able to make changes quickly, we

used the source for cppview as a basis. This source code was very unruly. It included such

things as a class called MyKinectDevice, which provided the video and depth callbacks, as well

as an asynchronous way to obtain the latest image of each in the form of a vector. Cppview also

contained a lot of code that got the OpenGL window up and running, as well as some

initialization code.

 The first step was to integrate Dr. Gauch's extensive digital image manipulation library

with this code. His library provides many useful classes, that allow you to manipulate any kind

of image, in any way you want, such as conversation to the frequency domain, filters, scaling,

and others too numerous to name. Obviously having all this code already made would be a huge

help in further direction of the thesis.

 To do this we decided to make the changes in the MyKinectDevice class, so that all the

other code could continue to operate without change. We started with the video and depth

www.manaraa.com

9

callback methods. These accepted raw data, void*, as their video streams. For video the stream

was interleaved as red, green, blue, red, green blue, and so on. Originally this was then stored

into a vector in the class. Instead we wanted to store it into a class in Dr. Gauch's library called

im_color. This is the class that holds color images. It is made up of three im_short classes

which are simply arrays of shorts that hold a monochrome image, one for red, green, and blue.

We replaced a vector with the im_color, and simply de-interleaved it to convert it to this type of

storage.

 The depth stream is monochrome 11-bit, but was being converted to color, and stored in a

vector. Instead of doing this we decided to store it in an im_short, and leave the conversion to

color as an option to be performed later, this cuts down on initial work done for each callback,

and allows access to the raw depth.

 The only thing left was to convert the private vector variables to their respective form,

and change the getRGB, and getDepth, the way to retrieve the last image of the camera, to

instead support these new formats.

 Unfortunately some code outside of the class did need to be modified for cppview to

continue to work. To display the images, OpenGL was used. They were getting the image, in

the form of the vector and simply converting this to a 2D texture that was displayed on the

window. The way the conversation to a 2D texture works however, is that you need an

interleaved RGB image. To accommodate this required new function that convert back from an

im_color or im_short image to a vector. This is one more conversion than the original version;

however, this is the last step to be performed before display and should not have much of a

computational effect, while allowing access to a vast library of image manipulation functions.

 Finally, we added a function to convert the depth back to a colored depth. We also added

www.manaraa.com

10

the ability to switch back and forth between the monochrome depth and the colored depth by

pushing a key.

Figure 4: Shows the update cppview with working RGB image, and im_short depth on left.

Figure 5: Shows the update cppview with depth converted to color on the left.

3.3 Creating a Cleaner Kinect Device Class

At this point there had been enough changes made to MyKinectDevice class to warrant

making our own class. This would allow us to clean it up as well as implement some new

features. The class was called Kinect. Our main goal was to clean up the code, allow for

portability, use outside just cppview, and to hide some of the pains of use.

 One of our main issues with creating an instance of the class with libfreenect is that you

www.manaraa.com

11

also needed an instance of another class called libfreenect. This was troublesome as we just

wanted to keep track of one single variable. Also the way to create an instance used the address

to this libfreenect instance, had it call a create class and needed to use templates.

 Libfreenect::Libfreenect freenect;
 Kinect* dev=&libfreenect.createDevice<Kinect>(0);

This type of instantiation is unnecessarily complex, and we wanted to hide it not only

from ourselves, but from anyone else that happened to ever use this class. To do this we decided

to make that libfreenect object a static variable inside the class. The reason we think it is a good

idea make it static is because it contains a mapping of all Kinect devices plugged into the

machine, and what their index is. Through this, you give it an index to get back the specific

device you need. If one of these was created for each instance of the Kinect class, the mapping

would be incorrect due to it not having a complete listing of every Kinect, and you woudld not

be able to access the Kinects properly. We then created a method called createDevice that takes

the Kinect index as a parameter and simply returns a Kinect instance. This may be further

simplified by pushing the code to the constructor as follows:

Kinect* dev=Kinect::createDevice(0);
 Kinect* dev=new Kinect(0);

We also simplified the code in the callbacks, and get methods as much as possible. The

previous constructor was also a problem. They were using a method of instantiating private

variable that was inelegant and unnecessary for most of the variables. It did allow the use of its

constructors however and was necessary for the freenect variable.

 In early stages, due to the old constructor design, it would not work in a separate .h,

and .cpp file design. With the new fixes it does, which makes it more portable. Another key

www.manaraa.com

12

feature of the class is that it now allows for the use of two different Kinects on the same

computer by specifying which one you want, and creating a separate object for each device.

Using this we modified cppview to take in a command line argument specifying which Kinect

device you wanted to connect to.

Figure 6: Shows cppview using the Kinect at index 0.

Figure 7: Shows cppview using the Kinect at index 1, and my smiling face.

3.4 Two Kinects

Creating the Kinect class earlier allowed the use of multiple Kinects per computer. Each

Kinect is specified by an integer index starting with 0. The Kinect class takes this index, looks

up a mapping it keeps of USB devices, and returns the specified devices. Using this we can open

two instances of cppview, one with index 0, and one with index 1, to get two different OpenGL

www.manaraa.com

13

windows showing the two different viewpoints of each Kinect.

 We wanted however to be able to open multiple Kinects per window, to allow for ease of

use, and to easily see the differences between different effects applied to each Kinect, and any

effects of both of them working at the same time.

 To accomplish this we made a struct, which could and should be made into a class in

future work, that allows an easy way to handle all the different data items needed to display one

Kinect device. Using this we could create two of these structs, one for each device, and display

them. This required expanding the window, creating more 2D textures, and generalizing

functions. We implemented a function that would place the 2D texture for each device at a

certain point on the window based on its device number. Right now the number of Kinect

devices is hard coded to be two, but in future this could be changed so you can have any number

of Kinects devices per window.

www.manaraa.com

14

Figure 8: Shows the use of two Kinects together

3.5 Averaging Images

3.5.1 Reasoning Behind Averaging and Holes

Because the Kinect is a relatively inexpensive depth sensor, there is often noise or other

artifacts in the depth data it produces. These problems can often be corrected using spatial or

temporal image averaging. For example, for stationary objects like walls or tables, the depth

values returned by the Kinect may vary slightly from image to image. By averaging values from

successive images together, we get a more accurate depth model of these objects.

 Another reason to do averaging is to remove black or white “holes” that occur in the

depth data due to how infrared light interacts with objects in the scene. Holes can be caused

www.manaraa.com

15

from a surface absorbing the light, or reflecting light away from the sensor. They can also occur

because of sensor error or ambient light interference. As long as the infrared light sent out does

not get back, a hole will be created. Looking at a sequence of images, holes tend to jump around

a bit. Averaging will help in alleviating this hole problem, by keeping more of the old data, that

is potentially good, and not keeping as much as the new potentially bad data. Of course this is

not a complete solution and other steps need to be taken.

3.5.2 Averaging First Attempt

Our first attempt at temporal averaging is probably the most obvious, but slowest way to

do it. We implemented a class called AveQueue, using an array-based queue of the last N images.

Each time it gets a new image; the oldest image is removed from the queue and subtracted from

the temporal average. Then the new image added to the queue and the temporal average. This

turned out to be complex, programmatically and computationally, due to having to store and keep

track of multiple images in an array. The more images you kept in your temporal average, the

more “ghost” images were produced of moving objects.

3.5.3 Infinite Impulse Averaging

There is a much better way to do this, which is called infinite impulse response [7].

Thinking about this, it is really quite brilliant, and is much faster computationally and easier to

implement. Instead of keeping track of the previous N images, all we need to keep is an average

of the previous images. When a new image appears, it is given a certain weight W and combined

with the previous average, which is weighted with (1-W) to create a new temporal average. By

adjusting the weight W, we can control how much of the new or old image you want. Increasing

www.manaraa.com

16

W reduces the amount of averaging that is applied, and decreasing W increases the amount of

averaging. This is illustrated in the figures below. This approach never removes data; although

the older the data is the smaller its effect on the average has and eventually gets so small it has

almost no effect.

 This not only works faster, but also allows an easy and dynamic way to control the image.

We implemented in cppview a key press that allows you to change the weight W given to the

new image, which of course alters the weight (1-W) applied to the average. In this way you can

dynamically alter the video and depth streams. Implementing this averaging technique paves the

way to further work in combining the video and depth images.

Figure 9: Infinite impulse response averaging with 10% of the new image and 90% of the average.

www.manaraa.com

17

Figure 10: Infinite impulse response averaging with 30% of the new image and 70% of the average.

www.manaraa.com

18

Figure 11: Infinite impulse response averaging with 50% of the new image and 50% of the average.

www.manaraa.com

19

Figure 12: Infinite impulse response averaging with 70% of the new image and 30% of the average.

www.manaraa.com

20

Figure 13: Infinite impulse response averaging with 90% of the new image and 10% of the average.

3.6 Holes

3.6.1 IR Interference from Multiple Kinects

Seeing two Kinect depth images at the same time allowed us to see clearly how they

affected each other. Since both Kinects are on, sending out infrared light, with this light

bouncing back all over the place, and each device’s sensors taking this light in and giving a depth

feed, this causes interference problems. Having both on at the same time creates a lot more holes

in the depth image. Each of the two devices depth streams gets noticeably worse with the other

on sending out infrared to the same area.

 While this is a problem, we do not believe it to be a significant problem, because where

www.manaraa.com

21

one Kinect may not have data because of interference, the other Kinect will have that missing

data. At least that is what we observed. So we believe if both depth streams were to be

combined, that a complete set of data would be available. Any data loss that occurs should be

able to be overcome by any of the other data we obtain from the Kinects.

3.6.2 Ignoring Bad Data

It became apparent, that to get the best results going forward some sort of scheme for

filling holes would be needed. Most of the holes were random errors, for some reason at that

frame the infrared light did not make it back, or it could not recognize the data from the infrared

pattern it uses. There was no reason that if we once had good data there, to replace it with bad

data.

 First we needed to determine which value represented no data. To do this we added a

feature to the OpenGL window, where no matter where you click, it will print out the current

RGB values of that particular location. Once we had this tool, all we had to do was click on the

holes as they appear to figure out that the value of 2047, depth is an 11 bit value, represents no

data in the depth image.

 At first we decided to just not use the data from the Kinect if it was 2047. This worked,

and was fast, however, it filled it all spots that did not have data, rather than just the holes that

would appear and disappear. It was decided that the areas of no data that are not always there is

what we wanted to focus on rather than the area that always are empty, polarized windows for

example. To correct the problem of holes we added two more methods, one called streak, and

another called previous averaging.

www.manaraa.com

22

3.6.3 Streak

These two functions were incredibly fast due to them being able to be implemented as

you get the data from the camera, which resulted in almost no more work. To implement streak,

whenever you came upon a pixel with NODATA, you just take the valid pixel to the left of it and

streak it across the hole, or use it to fill in all subsequent pixels in a horizontal line. While this is

fast, and easy to implement it left visual streaks in the image which were undesirable.

3.6.4 Previous Average

Previous averaging is similar to streak in that it is very fast, however it also displays

better results. Instead of just taking the previous good value, you take the pixel above it, to the

left of it if they are not equal to NODATA, and average them for your new pixel value. This files

in the holes with much better quality. However, a problem, this and streak both have is that not

only do they fill in holes; they also fill in those large areas of NODATA that never change, which

is undesirable. To tackle this, it became apparent that some form of a size requirement for the

hole was needed.

3.6.5 Modified Flood Fill

The first method to fill holes with only a certain size we implemented was a modified

form of flood fill, which is a classic region filling technique [6]. To do this we used a queue, and

a linked list. Whenever there was NODATA, it was added to the queue. Then until the queue

was finished, it would look at each one, and with two different schemes determine if its

neighbors needed to be added to the queue. The easiest, was just to examine the pixels four

neighbors, and if they were no data, add them to the queue. However, this turned out to pretty

www.manaraa.com

23

slow, about 0.057s per frame.

 A slightly faster method was to loop to the left and right of that pixel, adding each to the

queue if they were no data, and stopping when a valid pixel is found. This is slightly faster at

0.033s per frame. To do this we had to modify this flood fill method, to keep track of the valid

pixels around it as well. Whenever it would stop when it found a valid pixel, it would add this to

a total, and keep track of the count. This way when it was done it could calculate the average of

all the pixels surrounding the hole. Also we needed to change each examined pixel to a different

value, we chose -1, so it would not re-add them to the queue, and finally to keep track of them

for later, we kept them in a linked list structure to easily loop through and change their values to

the average.

 Because it can easily keep track of the size of the linked list, which contains the number

of pixels in the hole, it can easily determine if it is a big hole, or a small one, and whether or not

it needs to be filled in or not. For this we set a threshold level, and played with it trying several

sizes in the range of 20-150, to determine which one produced a better quality. In the end we

found a threshold of around 50 produced the best results.

Figure 14: On the left, without fillHole. On the right, with it.

www.manaraa.com

24

3.6.6 Horizontal and Vertical Interpolation

Another way to remove small holes is to loop through your image, upon finding some no

data, keep going until you find the end of this no data. One you find the beginning and the end,

you can get the good pixel before it and after, and linearly interpolate between them, filling in the

no data. This will give you better results than streaking because you incrementally change each

pixel value along the way, resulting in a smooth transition. This also allows you to determine the

size of the hole, and decide if it was too big to be filled in. We did this in two ways, horizontally

and vertically.

 Horizontally interpolating was the fastest with an average time of 0.0007s per frame,

however the quality seemed somewhat lacking. Vertically interpolating seemed to have the best

results for its speed. Quality wise, it seemed on par with the flood fill method, but much faster

with an average of 0.0015s per frame. The size threshold is set for both horizontal and vertical

interpolation ended up about the same at 35 and 30 pixels respectively. Overall we think that for

speed purposes and quality purposes vertical interpolation is the best method of the several that

were tested. See figures below.

Figure 15: On the left, without horizontalInterpolate. On the right, with it.

www.manaraa.com

25

Figure 16: On the left, without verticalInterpolate. On the right, with it.

3.7 Three-Dimensional Model

 In order to make the transition from RGB and depth images into a three dimensional

model it was decided that drawing polygons and using texture mapping to place an image on top

of these polygons was a good place to start. The texture to be used would be the RGB image

repeatedly coming from the Kinect. How to draw the polygons then became the issue. We

decided to just use the depth values as the Z positions of the polygons. What we did is draw one

polygon for every pixel, so there will be 640 polygons in the X direction and 480 in the Y

direction. This makes their x and y positions of each polygon easy. For the depth, we simply use

the depth value of that pixel, and the pixel to the right and below it to get the four corners.

 When you first view this, you only see the RGB image; it is not until your rotate the

image that you can see the depth that stands out. This worked surprisingly well, and once a bug

was fixed the polygons all lined up pretty well. Still there were many issues that needed to be

cleaned up such as stretched polygons, texture offsets, and usability.

www.manaraa.com

26

Figure 17: Three dimensional model

3.7.1 Usability

The next thing we decided to do was make it more useable. It is hard to tell how well it is

working if you cannot see the depth of the polygons. Therefore we needed to rotate it. We made

two modes rotate, and translate. You can change between them by pressing 'r' or 't'. Once in

rotate mode, you click your mouse on the point you want and drag the mouse. The scene rotates

around this point. Once in translate mode, it works the same click and drag to move the scene to

the position you want. You can also, at any point, zoom in and out by using the mouse scroll

wheel. These three tools also you to inspect the model in great detail, allowing for much better

idea of what is being displayed.

www.manaraa.com

27

Figure 18: Showing Rotate, Translate, and Scale

3.7.2 Improvements to the Model

The first thing you start to realize when inspecting the image is that while it does depth

properly, you get polygons that are stretched way back, causing the scene to look distorted. The

reason for this is that in those areas, there is no depth information. It is on an edge of an object,

and the next object is much farther back, so when it draws the polygons it attempts to stretch way

too far. To combat this we decided the best way is to simply not draw those polygons. To do this,

whenever it is about to draw a polygon, you simply get the maximum of the four depth values,

and the minimum. You can then determine if the maximum minus the minimum is greater than

some threshold. What this does is it allows us to determine how far that polygon stretches, if it is

too far, simply do not draw that polygon.

www.manaraa.com

28

Figure 19: Not drawing stretched polygons resulting in a more comprehendible image.

3.7.3 Texture Alignment

 The sensor for the depth and the RGB camera are not in the exact same spot. This results

in the texture and depth, not perfectly lining up. You could at this point go through a lengthy

calibration procedure to make sure that everything works perfect. However, through observation,

it seems that the texture was simply off to the right and above where it should be. It did not seem

as if there was any scaling. To counter this we chose to simply allow for manual correction. You

can move the texture until it seems to fit, these positions are then saved to a file, and read in the

next time the program is opened, allowing the texture to be in the correct position, and these can

be further modified, if it seems they are not quite correct.

www.manaraa.com

29

3.7.4 Combining Two Models

In order to tackle the combination of the two models we took a similar approach to how

we adjusted the texture. You start off with two models, you then choose which model you want

to be able to control, or if you want to control both models at once. The user then will manually

translate, and rotate both models, until they are in the correct position. Once there, these transla-

tions and rotations will also be stored in a file, to be read at the start of the program.

Obviously there will be points where these models collide, where they both have the

same information. Our initial way of handling this is to simply allow OpenGL Z buffering to

handle this. Z buffering will only allow the closest polygon, which is hopefully the best polygon,

to display. A problem with this is that obviously this will only work for your current set-up.

Once you move the Kinects, they will no longer be in the correct positions.

What we found from experimenting with this, it is possible to merge the models from two

different Kinects and produce a combined model with more information in it. Such as, one Ki-

nect will see one side of the room, and the other will see the other half of the room, together you

will have a much wider view of the room. This can be seen in the figures below.

www.manaraa.com

30

Figure 20: Original two models on top, combined on the bottom.

www.manaraa.com

31

Figure 21: Combined model from two different angels, showing improved visibility.

There are some noticeable problems with this approach however. For one the Z buffer,

and the distance values from the Kinects are not perfect, and you can get a lot of polygons ap-

pearing and disappearing which can be distracting. The other is, this only works well depending

on your Kinect setup. It becomes very difficult to line up the models perfectly and in some cases

near impossible. Two models with vastly different angles of view on things make it hard to line

www.manaraa.com

32

straight lines such as doors up. This can be seen in the figure below. For this approach to work,

the Kinects need to have as little in common, as far as their contents, as possible. Yet they also

need to be on near the same level, as well as close together to avoid alignment issues. This de-

feats one of the goals of actually having a more complete model of objects that overlap.

Overall this method works, but needs significant overhaul to produce good results.

Augmenting it with other techniques, such as more powerful monitoring of polygons, and math-

ematical alignment methods are necessary.

Figure 22: Combined model with too much in common and different angles resulting in alignment issues.

www.manaraa.com

33

4. CONCLUSIONS

The Kinect presented the opportunity to get not only the RGB image associated with the

scene, but also the depth information along with it. In this thesis, two of these devices were

tested and used in order to create a 3D reconstruction of the scene.

We implemented classes and methods for the retrieval of Kinect information using the

OpenKinect API but in the format that allowed the greatest usability. We explored ways of

improving the depth information we received from the Kinect in the form of time-based

averaging, and location-based averaging, comparing the advantages, disadvantages, and speed of

each.

Finally, we used the depth information to create a 3D reconstruction of the scene using

one Kinect, and presented an implementation that allows you to combine two such models.

Once rotated, translated, and scaled correctly, these models could line up and provide an

improved scene reconstruction. However, more powerful techniques are needed to produce

better results and more robustness. Currently our thesis is limited to certain physical setups with

the Kinects in order to have a combined model with more information in it than a model from a

single Kinect.

www.manaraa.com

34

5. FUTURE WORK

 While the work that was done on this thesis successfully reconstructs a three dimensional

model from a Kinect on a computer there is more that can be done. Right now the thesis is very

limited, in that it requires manual calibration. In the future it would be best to use the wealth of

data to do a form of automatic calibration. One way to do this is to calculate the depth of objects

in the classic way, find objects in two images and guess at their depth, and then use this in

conjunction with the real depth information. Another is the use access the Z buffers of OpenGL

and rotate these around until the two Z buffers have the best match.

www.manaraa.com

35

REFERENCES

[1] "PrimeSense, NITE Middleware." PrimeSense, NITE Middleware. Web. 12 June 2011.

<http://www.primesense.com/?p=515>.

[2] "Open Kinect." Open Kinect. Web. 12 June 2011. <http://openkinect.org/wiki/Main_Page>.

[3] Kreylos, Oliver. "Oliver Kreylos' Research and Development Homepage - Kinect Hacking."

Oliver Kreylos' Research and Developement. Web. 12 June 2011.

<http://idav.ucdavis.edu/~okreylos/ResDev/Kinect/>.

[4] SangUn Yun; Dongbo Min; Kwanghoon Sohn; , "3D Scene Reconstruction System with

Hand-Held Stereo Cameras," 3DTV Conference, 2007 , vol., no., pp.1-4, 7-9 May 2007

[5] Microsoft. "Kinect - Xbox.com." Xbox 360 - Official Site - Xbox.com. Microsoft. Web. 19

June 2011. <http://www.xbox.com/en-US/kinect>.

[6] Hoon Kang; Seung Hwan Lee; Jayong Lee; , "Image segmentation based on fuzzy flood fill

mean shift algorihm," Fuzzy Information Processing Society (NAFIPS), 2010 Annual Meeting of

the North American , vol., no., pp.1-6, 12-14 July 2010

[7] Levy, M.; , "The Impulse Response of Electrical Networks, with special reference to the Use

of Artificial Lines in Network Design," Electrical Engineers - Part III: Communication

Engineering, including the Proceedings of the Wireless Section of the Institution, Journal of the

Institution of , vol.90, no.12, pp.153-164, December 1943

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2012

	Three-Dimensional Scene Reconstruction Using Multiple Microsoft Kinects
	Matt Miller
	Recommended Citation

	Three-Dimensional Screen Recreation using Multiple Microsoft Kinects

